СВОЙСТВА ПЛЕНОК, ПОЛУЧЕННЫХ МАГНЕТРОННЫМ РАСПЫЛЕНИЕМ ВЫСОКОЭНТРОПИЙНОГО V-Cr-Cu-Ni-Co-Fe-Al СПЛАВА В УСЛОВИЯХ ИОННОЙ БОМБАРДИРОВКИ

<u>Шагинян Л.Р.,</u> Горбань В.Ф., Крапивка Н.А., Копылов И.Ф., Верещака В.М., Карпец М.В.,.

Институт Проблем Материаловедения НАН Украины 03680, Киев – 142, ул. Кржижановского 3, lrshag@ipms.kiev.ua

Высокоэнтропийные сплавы (ВЭС) – новый класс сплавов, отличающихся от обычных: (1) многоэлементным составом, содержащим не менее пяти элементов, (2) концентрация п каждого из которых лежит в пределах 35>n>5 at%. Твердые растворы, в которых отсутствует лидирующий по концентрации элемент, имеют тенденцию к большей стабильности при повышенной температуре благодаря тому, что энтропия смеси выше, чем у отдельных ее элементов. Такие особенности обеспечивают привлекательные физические свойства этому классу сплавов, склонных к формированию простых ОЦК, ГЦК и ГЦК+ОЦК фаз, легко образующих наноразмерные включения и аморфные фазы и обладающих высокими термостабильностью, коррозионой стойкостью и твердостью. Эти свойства обеспечивают ВЭС хорошие перспективы для применения в различных областях техники.

Основной формой любого материала в современном производстве являются покрытия и пленки. Их получают высокоскоростными плазменными технологиями, в частности, с помощю магнетронного распыления (МР). Способность наносить покрытие/пленку состава, эквивалентного исходному присуща МР. Такая его особенность весьма благноприятна для получения пленок ВЭС.

Нами были получены пленки ВЭС эквимолярного состава путем распыления AlFeCoNi-CuCrV мишени в среде Ar с давлением \sim 0.3 Pa. Сама мишень была получена методом аргоннодуговой плавки. Пленки толщиной 1.5-7.0 mkm осаждали на полированные пластины монокристаллов Si со скоростью \sim 0.6-2.2 nm/s, зависившей от тока разряда, I_d и ионной бомбардировки (ИБ). Перед осаждением подложки подвергали ионной очистке (напряжение на подложке U_b = -600 V, плотность ионного тока $j\sim$ 1-1.5 mA/cm²). После чего устанавливали нужный

ток разряда (I_d =0.2–0.5 A), от которого зависело

напряжение разряда (U_d =300–450 V), и открывали заслонку.

Состав пленок исследовали с помощью микрорентеноспектрального анализа, структуру – методами рентгеноструктурного анализа и электронографии, а также сканирующей и атомно-силовой микроскопии.

Все пленки были нанокристаллическими, текстурированными и кристаллизовались в двух фазах – ОЦК (a=2.92 Å) и ГЦК (a=3.65 Å). Последние от технологических параметров не зависели. В то же время, мы установили, что ИБ ($U_b = 0 - -200 \text{ V}$) заметно снижает скорость роста пленок и вызывает изменения их состава и микроструктуры. Состав пленок, полученных без ИБ, близок к составу мишени. Но он неуклонно изменяется с ростом энергии ионов, и пленки, выращенные при максимальной энергии (U_b = -200 V), сильно обеднены Al, Cu и Ni. Также наблюдаются изменения и в микроструктуре пленок. Размеры субструктурных элементов ("зерна" из которых состоят объем и поверхность пленки, в свою очередь сформированные из кристаллитов) уменьшаются с увеличением U_b. Микротвоердость наших пленок по сравнению с пленками других ВЭС исключительно высока и возрастает от~14 GPa (U_b=0 V) до \sim 19.0 GPa (U_b= -200 V).

Таким образом, было установлено, что все исследованные свойства AlFeCoNiCuCrV пленок сильно зависят от энергии ионов, бомбардирующих их при осаждении. Предполагается, что причиной изменения состава есть распыление мишени/пленки частично в виде кластеров типа V-Co, Al-Ni. Структурные изменения происходят в соответствии с известными механизмами влияния ИБ. Изменение же микротвоердости пленок есть следствие изменения их состава и структуры под воздействием ИБ.