ОБРАЗОВАНИЕ ТВЕРДОГО РАСТВОРА БОРА В ТАНТАЛЕ ПРИ ИЗМЕЛЧЕНИИ СМЕСИ ИХ ПОРОШКОВ В ПЛАНЕТАРНОЙ МЕЛЬНИЦЕ

Савяк М.П., Мельник А.Б., Тимофеева И.И., Ивченко В.И., Василькивская М.А., Карпец М.В., Удовик О.О., Дубчак С.Ю., Уварова И.В.

Институт проблем материаловедения НАН Украины им. И.М.Францевича, Кржижановского 3, Киев, 03142 Украина, e-mail:saviak@ipms.kiev.ua

В работе [1] показано, что растворимость бора в тантале при температуре выше 1300 С незначительная, а при понижении температуры она стремится к 0. Внедряемые атомы в объемно центрированной кристаллической (оцк) решетке тантала могут размещаться в двух позициях: октаэдрической и тетраэдрической. Согласно работе [2], в тетрапоры оцк решетки могут внедряться более крупные неметаллические атомы, чем в октапоры. Для тетрапор d_x/d_{me} =0,291, а для октапор d_x/d_{me} = 0,154, где d_x диаметр жесткой сферы, которая размещается в тетраэдре, d_{me}-диаметр атома металла. Однако при заполнении тетраэдрических пустот атомами внедрения необходимо сдвигать атомы в плотно упакованных плоскостях. Поэтому в равновесных условиях, заполняются октаэдрические пустоты. Деформация оцк решетки может способствовать увеличению растворимости внедряемых атомов за счет заполнения тетраэдрических пустот. Целью данной работы было изучение особенностей образования твердых растворов бора в тантале при размоле в планетарной мельнице, где достигаются существенные ударные нагрузки и сдвиговые деформации.

Методика эксперимента

Размол проводили в среде аргона в планетарной мельнице АИР-015М, в которой можно достичь ускорения центробежного поля 45g при скорости вращения водила 735 об/мин., и скорости вращения барабанов 1840 об/мин. Соотношение количества стальных шариков и размалываемого порошка составляло 20:1. Рентгенофазовый анализ проводили на установке ДРОНЗ в медном Кα излучении. Из анализа уширения рентгеновских отражений оценивалась величина областей когерентного рассеяния (ОКР) и микроискажения кристаллической решетки ε.

Результаты эксперимента

Рентгеновские данные показали, что размол в течение 5 мин. смеси порошков тантала и бо-

ра приводит к уширению рентгеновских дифракционных линий, что связано с деформацией кристаллической решетки тантала. Размол также приводит к увеличению периодов кристаллической решетки тантала, что указывает на образование твердого раствора внедрения бора в тантале. Период решетки исходного тантала, a=0.3302 нм, а после 5мин размола a=0.3315нм., при этом размер OKP = 28.91нм, а искажения решетки- $\epsilon=0.004578$.

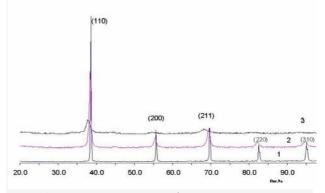


Рис. 1 Рентгеновские дифрактограммы смеси порошков Та+В размолотых в течение: 1- 0 мин., 2- 5 мин., 3-15 мин.

Образование твердых растворов бора в тантале в области низких температур возможно только при внедрения атомов бора в тетраэдрические пустоты оцк решетки тантала т.к. d_B/d_{Ta} =0,29. Заполнение тетраэдрических пустот при размоле в планетарной мельнице, по всей видимости, связано со значительной деформацией кристаллической решетки тантала в процессе размола, на что указывают большие уширения рентгеновских линий.

1.Х.Дж.Гольдшмидт. Сплавы внедрения.-«Мир», Москва, 1971, 424 с. 2.Р.А.Андриевский, Я.С. Уманский. Фазы внедрения.- «Наука», Москва, 1977, 239 с.