СВОЙСТВА И ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ИЗНОСОСТОЙКОГО МАТЕРИАЛА НА ОСНОВЕ КАРБИДА ТИТАНА

<u>Гребенок Т. П.</u>, Дубовик Т. В, Ковальченко М. С., Субботин В.И., Рогозинская А.А. Институт проблем материаловедения им. И. Н. Францевича НАН Украины,

ул. Кржижановского, 3, Киев-142, 03142, Украина, e-mail: grebenok t@ipms.kiev.ua

Целью работы является создание безвольфрамового твердого композиционного материала с высокими физико-механическими и эксплуатационными характеристиками. Основой материала является карбид титана ТіС, который обладает высокой температурой плавления, твердостью, механической прочностью, теплопроводностью и коррозионной стойкостью. Для усиления этих свойств в композиционный материал вводят добавки тугоплавких карбидов -VC, Mo₂C и NbC. Введение в состав материала металлической связки на основе никеля и хрома активирует процесс уплотнения при горячем прессовании, а также способствует снижению коэффициента трения и повышению износостойкости горячепрессованного композиционного материала.

Перечисленные порошки смешивали в соответствующих соотношениях и одновременно размалывали в планетарной мельнице в среде ацетона (6 часов), сушили в сушильном шкафу, просеивали через сито (средний размер частиц не превышал 3-8 мкм). Образцы получали горячим прессованием: температура 1470-1520°С, давление 20 МПа, время выдержки 8-10 минут после полной усадки. Пористость горячепрессованных образцов составляла 4-9 %.

На механически обработанных образцах определяли фазовый состав, плотность, механическую прочность, твердость, коэффициент трения и интенсивность износа.

По данным рентгеноструктурного анализа (дифрактометр ДРОН-3, $Cu-k_{\alpha}$ -излучения) в горячепрессованном композиционном материале кроме исходных фаз присутствуют в небольших количествах новообразованные фазынитерметаллид $CrNi_2$; Cr_7C_3 ; сложные карбиды Nb_4Ni_2C , Cr_2VC_2 , $Mo_{24}Cr_7C_{19}$.

Плотность, механические свойства и твердость по Роквеллу определяли по стандартным методикам. Величину критического коэффициента интенсивности напряжения K_{1C} (трещиностойкость) определяли IF-методом при нагрузке на индентор 100 Н. Коэффициент трения и интенсивность износа исследовали по схеме «Вал-образец» при нагрузке 2 МПа и скорости 12-14 м/с. Полученные данные приведены в таблице.

Данные, приведенные в таблице, свидетельствуют о достаточно высоких значениях механических свойств, твердости, коэффициента трещиностойкости, а также износостойкости при относительно низком значении коэффициента трения. Перечисленные свойства позволяют рекомендовать разработанный материал для обработки резанием и пластическим деформированием широкого класса сталей и сплавов, а также в качестве износостойкого материала деталей машин и механизмов, которые работают в условиях трения при повышенных скоростных

Таблица Свойства горячепрессованного износостойкого материала на основе карбида титана TiC

Состав материала,	Мех. прочность,		Твердость	Трещино-	Коэф.	Интенсивность
масс.%	МПа		ПО	стойкость	трения	износа,
	при	при	Роквеллу,	K_{1C} ,		мкм/км
	изгибе	сжатии	HRA, давл.	МПа·м¹/2		
			50 кг			
(59-71)TiC-(4-6)VC-(4-6)	1220-	2125-	91,6-92,0	8,5-8,8	0,21-0,25	2,1-2,3
Mo ₂ C(4-6)NbC-(12-	1245	2180				
20)Ni-(3-5)Cr						