РАЗРАБОТКА ЭЛЕКТРОДНЫХ МАТЕРИАЛОВ И СВОЙСТВА ЭЛЕКТРОИСКРОВЫХ ПОКРЫТИЙ ИЗ НИХ

Паустовский А.В., <u>Ткаченко Ю.Г.</u>, **Алфинцева Р.А., Юрченко Д.З.** Институт проблем материаловедения им. И.Н.Францевича НАН Украины, ул. Кржижановского, 3, Киев, 03680, Украина, e-mail: dep65@ipms.kiev.ua

В ИПМ НАН Украины исследования по разработке электродных материалов для электроискрового упрочнения и восстановления изношенных деталей машин и механизмов проводятся, начиная с 70-х годов прошлого столетия. За это время разработан широкий ряд электродных материалов на основе металлических сплавов и тугоплавких соединений, позволяющих создавать на металлических подложках легированные слои с высоким уровнем свойств.

Для восстановления изношенных поверхностей разработаны электродные материалы на основе никеля и железа. При изготовлении этих электродных материалов были использованы методы порошковой металлургии и литье. В табл.1 приведены качественные и функциональные свойства электроискровых покрытий из сплавов на основе никеля.

Таблица 1

Элект-	δ,	HM,	I,	f	δ m/S,
род*	МКМ	ГПа	мкм/км		$M\Gamma/cM^2$
4A	400	11.38	10	0,28	2,4
4ASi	500	12.19	8,3	0,30	1,26
4ATi	500	10.85	9,5	0.29	1,16
4AMn	610	8.87	10,1	0,27	1,23

Состав сплава 4A— Ni-Cr-Al. Содержание Si,Ti,Mn — мас.%. Покрытия нанесены на установке ЭФИ—46. δ m/S стали 30ХГСА без покрытий — 46,3 мг/см²

В табл. 2 приведены свойства покры-тий на стали 45 из сплавов на основе Fe.

Таблица 2

		Tac	лица 2
Электродный матери-	δ,	I,	f
ал, мас.5	МКМ	мкм/км	
Fe-2Si -12Ni - 15 Cr ₃ C ₂	2,1	11	0,32
Fe-2Si-12Ni - 25 Cr ₃ C ₂	1,9	_	
Fe-2Si-12Ni - 35 Cr ₃ C ₂	1,8	_	_
Сормайт С–27	0,7	70	0,36
Сталь 45 без покрытия	_	100	0,34

Микротвердость покрытий из разработанных материалов составляет 5-5,8 ГПа.

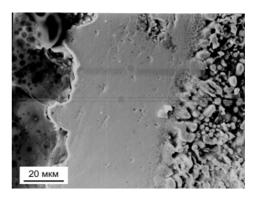

Для упрочнения изношенных поверхностей деталей разработаны электродные материалы на основе тугоплавких соедине-ний ТіС, AlN. В табл.3 приведены свойства покрытий на стали 45 из электрода на основе ТіС и на ВТ6 из сплава на основе AlN.(установка "ЭЛИТРОН 22A").

Таблица 3

Электродный материал	δ, мкм	НМ, ГПа	f	<i>I,</i> мкм/км
TiC-Mo ₂ C- Co-Cr	100	14– 15	0,2	2–3
AlN– MoSi ₂	50-	16,5	_	_
	60			

Окалиностойкость покрытий из сплава на основе AlN при $T-1100~^{\circ}$ C в 3,6 превышает стойкость против окисления сплава BT6. Сопротивление окислению покрытия на сплаве BT6 из материала на основе TiC при длительной выдержке при $T=900~^{\circ}$ C в 3 раза выше в сравнении с сплавом BT6.

На рисунке показано поперечное сечение покрытия на стали 45 из электродного материала на основе TiC.

Апробация технологии электроискрового легирования и разработанных электродных материалов показала эффективность их использования для восстановления и упрочнения изношенных деталей машин и механизмов.