THERMODYNAMICS OF FORMATION OF GERMANIDES OF THE HEAVY RARE EARTH METALS

Sidorko V.R.

I.M. Frantsevich Institute for problems of material sciences NAN Ukraine 03680, Kiev-142, Krzhyzhanovskii str. 3, Ukraine, E-mail: korniy@ipms.kiev.ua

The thermodynamics properties of alloys of heavy rare earth with germanium are studied insufficiently comparing with the corresponding phase diagrams data. Liquid alloys in the R-Ge systems have been studied only for the germanium rich composition (exceptionally the Y–Ge system). For the systems with known concentration dependences of the thermodynamic functions (Y, Gd, Ho, Er)-Ge, when going toward the compounds with highest content of R-element the negative values of $\Delta_f G^o$ ($\Delta_f H^o$) increase steadily, reaching extremal values at 5:3 ratio. For these systems the R₅Ge₃ compounds have the highest melting temperatures and are the only congruently melting ones. The known formation enthalpy data for the same formula germanides R₅Ge₃ are approximately the same for the compounds of cerium group metals, whereas for the yttrium group there is a marked increasing of the heat effects along the row from Gd to Lu [1]. The formation enthalpy value for the Y₅Ge₃ is close to the same value for the Ho₅Ge₃ (Table 1). Apparently, the $\Delta_f H$ (298,15 k) for the germanides Gd₅Ge₃ and Tb₅Ge₃ seem to be slightly lower.

Table 1
Formation enthalpies of lowest germanides the rare earth of Y-group

cutti of 1 group				
Germanide	$-\Delta_{\rm f} {\rm H}^{\rm o}(298,15~{\rm K})$, kJ/mol of at.			
Y ₅ Ge ₃	89.8 ± 5.0			
Gd ₅ Ge ₃	82.0 ± 2.6			
Tb ₅ Ge ₃	$81,7 \pm 2,7$			
Dy ₅ Ge ₃	$92,4 \pm 2,3$			
Ho ₅ Ge ₃	91.8 ± 1.7			
Er ₅ Ge ₃	$95,6 \pm 2,0$			
Tm ₅ Ge ₃	$91,3 \pm 1,9$			
Lu ₅ Ge ₃	93.1 ± 2.2			

The thermodynamic characteristics of formation of highest germanides of the rare earth of the Y-group by calorimetric methods have not been studied; however, for the systems Ge–(Y, Gd, Ho, Er) these data were obtained by us by the electromotive forces method [1-3]. The values of $\Delta_f H^o$ for the compounds RGe_m, being in equilibrium with the solid germanium one can compute from limiting enthalpies of dissolution of the rare earth in liquid germanium. if one suggest

the $\Delta \overline{H}_R$ in the two-phase field [RGe_m + Ge] is equal to $\Delta \overline{H}_R^\infty$ in liquid germanium. The values of $\Delta_f H$ for highest germanides of the rare earth of Y-group, calculated by this way, are listed in Table 2.

Formation enthalpies of highest germanides of the

rare earth of Y-group					
D	$-\Delta \overline{H}_{R(Ge)}^{\infty}$	D.C.o.	$-\Delta_f H(RGe_m)$, kJ/mol of at.		
R	kJ/mol of at	RGe_m	calculate	experim	
	[4]		d	ent	
Y	258±13	$YGe_{1,7}$	$95,6\pm4,8$	77,8±3,4	
	176±6	$YGe_{1,7}$	$65,2\pm2,2$		
Gd	241±15	GdGe _{1,63}	91,6±5,7	82,9±3,4	
Tb	232±16	TbGe ₂	$76,6\pm5,3$		
Dy	214±14	DyGe _{2,7}	57,8±3,8		
Но	196±14	HoGe _{2,7}	52,9±3,8	53,8±1,3	
Er	213±11	ErGe _{2,5}	60,9±3,1	59,6±0,9	
Tm	200±15	$Tm_{0,9}Ge_2$	62,1±4,7		
Lu	190±7,4	LuGe _{1,8}	67,8±2,6		

For Tm metal the value $\Delta \overline{H}_{Tm(Ge)}^{\infty}$ is not measured in experiments, so, it was estimated by interpolation. The calculated formation enthalpies for compounds $HoGe_{2,7}$ and Er_2Ge_5 are very close to the experimental data, and are in agreement for the $GdGe_{1,63}$ within estimated error bars. Significant discrepancies of the experimental $\Delta \overline{H}_{Y(Ge)}^{\infty}$ data does not allow to conclude a degree of agreement between the experimental and calculated $\Delta_r H^o$ value for the germanide $YGe_{1,7}$.

- [1] Сидорко В.Р., Буланова М.В., Мелешевич К.А. // Современные проблемы физического материаловедения. Киев: ИПМ НАН Украины, 2005. С. 28-41.
- [2] Гончарук Л.В., Сидорко В.Р., Обушенко И.М. // Порошковая металлургия. 2012. № 5/6. С. 100-105.
- [3] Сидорко В.Р., Гончарук Л.В. // Порошковая металлургия. 2008. № 11/12. С. 99-104.
- [4] Сидорко В.Р., Полоцкая Р.И. // Термодинамика металлических сплавов. Киев: ИПМ НАН Украины, 1994. С. 71-102.