КОНСТРУКЦИОННАЯ КЕРАМИКА НА ОСНОВЕ КАРБИДА КРЕМНИЯ

С.Н. Перевислов, Д.А. Трубин, В.Д. Чупов

ОАО «Центральный Научно-Исследовательский Институт Материалов» г. Санкт-Петербург, Парадная ул., д. 8, инд. 191014, тел/факс. 8 (812) 274-55-57 E-mail: perevislov@mail.ru.

Карбид кремния нашел широкое применение в технике благодаря уникальному физико-механических сочетанию свойств, высокая таких как твердость теплопроводность, температурный малый расширения, коэффициент линейного высокотемпературное сопротивление окислению. Эти стимулируют свойства разработку широкого класса материалов на его основе.

В работе получены материалы на основе карбида кремния методами жидкофазного (LPSSIC) и реакционного спекания (SiSiC) с повышенными механическими и высокотемпературными свойствами.

Для жидкофазного спекания карбида кремния в шихту вводили оксиды Al_2O_3 , Y_2O_3 и MgO в соотношении эвтектического состава, расположенного по разрезу шпинель-гранат.

В работе использовали SiC-порошки, полученные на мельнице струйного измельчения, с размером $d_{0,5}=0,6$ мкм. При равномерном распределении оксидов между частицами карбида кремния, в процессе перемешивания компонентов, удается получить при формовании заготовки с высокой плотностью.

Введение оксидных добавок в карбид кремния осуществлялось несколькими способами: механического путем перемешивания В барабанном смесителе карбида кремния c индивидуальными оксидными компонентами; с переплавленными на плазменной установке и на установке высокоскоростной закалки расплава оксидными компонентами; ультрадисперсными оксидами ($d_{0,5} \square 0.05$ мкм); методом соосаждения из растворов солей оксидов на частицы карбида кремния.

Спекание проводили в вакуумной печи в среде аргона при температуре $1860 \pm 10^{\circ}$ С. На полученных образцах изучали физико-

механические свойства. Максимальные свойства были получены у SiC-материалов с оксидами введенными методом соосаждения из растворов солей (см. таблицу).

Используя порошок карбида кремния, измельченный на струйной мельнице, при реакционном спекании можно получить материалы с плотностью $\rho=3,16-3,17$ г/см 3 (см. таблицу).

Таблица Свойства карбидокремниевых материалов

	SiSiC	LPSSiC
Содержание Si _{ост} , %	3-4	-
Плотность, г/см ³	3,16-	3,25-
	3,17	3,3
Пористость, %	<0,2	<1,0
Модуль упругости, ГПа	350-360	390-
		420
Прочность при изгибе,	280-300	600-
МПа		650
Прочность при изгибе	110-120	-
(1400°С), МПа		
Вязкость разрушения,	3,3-3,5	6,0-6,5
МПа·м ^{1/2}	3,3-3,3	0,0-0,3
Твердость по Виккерсу,	21-22	20-21
ГПа	21-22	20-21

Использование в технологии жидкофазного и реакционного спекания карбида кремния, измельченного на струйной мельнице, приводит к получению материалов с высоким уровнем свойств.

Материалы с полученными свойствами могут быть рекомендованы для использования в качестве броневых элементов в различных видах защиты, а также в качестве узлов трения, работающих в экстремальных условиях повышенных температур и агрессивных сред