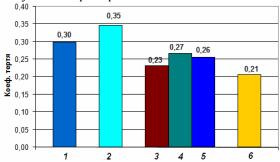
ЭЛЕКТРИЧЕСКИЕ СКОЛЬЗЯЩИЕ КОНТАКТЫ НА ОСНОВЕ МЕДИ ДИСПЕРСНО- УПРОЧНЕННОЙ ТВЕРДЫМИ ТУГПЛАВКИМИ СОЕДИНЕНИЯМИ

Богатов А.С., Степанчук А.Н., Тимошенко О.В.

НТУУ «КПИ» 030056, г. Киев-56, проспект Победы, 39 Тел. 241-76-17, e-mail: <u>astepanchuk@iff-kpi.kiev.ua</u>


В настоящее время одной из проблем железнодорожного транспорта является повышение эксплуатационных характеристик токосъемников (пантографов), материал высокою которых должен иметь электропроводность, коэффициент низкий И повышенные характеристики прочности при высоких скоростях трения и повышенных температурах.

Анализ существующих сведений показывает, что одним из путей решения этой проблемы является применение для изготовления изделий из материалов методов порошковой металлургии и использование в качестве исходных порошков дисперсно-упрочненной меди. Нами показано, что такие порошки можно получать диспергированием расплавов меди в которых присутствуют легирующие добавки, которые в процессе кристаллизации продуктов диспергирования образуют дисперсные включения карбидов, боридов или других твердых тугоплавких соединений (ТС) [1].

Нами исследованы свойства (коэффициент интенсивность трения, износа, удельное электрическое сопротивление, твердость) композиционных материалов контактних пластин пантографов на основе дисперсноупрочненной ТС меди (ДМ_{ТС}), полученных по разным технологическим схемам - горячей штамповкой и прессованием-спеканием. Для сравнения также исследованы аналогичные свойства для материалов на основе чистой меди $(ДМ_{\rm H})$, ДМ оксидом алюминия $(ДM_{\rm Al2O3})$ и материалов выпускаемых серийно (рис., табл.).

Как видно из приведенных результатов на свойства материалов влияет их состав и метод получения. Наиболее низкий коэффициент трения и в 1,5–2,0 раза больший ресурс работы имеют материалы на основе ДМ_{ТС} полученные горячей штамповкой, при сохранении электропроводимости на уровне серийных материалов.

Таким образом, можно отметить, что материалы на основе $ДМ_{TC}$ являются перспективными для изготовления контактных пластин пантографов. Последнее, вероятно, может быть обусловлено сохранением механических свойств материала основы при высоких рабочих температурах за счет его дисперсного упрочнения и высокой плотности, получаемой при горячей штамповке.

 $I-\text{M}\Gamma$ -487 (Словакия); $2-\text{B}\mathcal{K}3\Pi(\text{Россия});$ 3,4,5 — Спеченные материалы на основе ДМ $_{\text{TC}},$ ДМ $_{\text{Al2O3}},$ ДМ $_{\text{Ч}}$ соответственно; $6-\Gamma$ арячештампованные на основе ДМ $_{\text{TC}}$

тарячештампованные на основе ДМ_{ТО}
Рис. – Коэффициенты трения различных материалов

Табл. – Свойства контактных пластин

Материа	Свойства		Pecypc
л	Твер-	Уд.	работы
	дость	электричес	,
	HB,	кое сопр.,	тыс.
	МПА	$O_{M} \times M^{-7}$	KM
ДМтс	720-760	0,22-0,25	65-75
ΜΓ-487			
(Словак	600-650	0,23-0,24	50
ия)			
ВЖЗП	500-600	0,23-0,24	50
(Россия)	300-000	0,23-0,24	30

Литература

1. Отримання порошків дисперсно-зміцне-ної міді / А.М. Степанчук, О.В.Богатов, М.Б.Шевчук, Н.Ф.Пашковець // Луцьк: ЛДТУ "Наукові нотатки", 2010.— Вип. 29, — С. 188–195