ВЛИЯНИЕ МАГНИТНОГО ПОЛЯ НА ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА НАНОГРАНУЛИРОВАННЫХ ТОЛСТЫХ ПЛЕНОК НА ОСНОВЕ ТРИНИКЕЛЬ БОРИДА

Рудь Б. М., Тельников Е. Я., Марчук А. К., Гончар А. Г.

Институт проблем материаловедения им. И. М. Францевича НАНУ п/и 03680, г. Киев, ул Кржижановского, 3; <u>dir@ipms.kiev.ua</u>.

работе В исследовалось влияние магнитного поля на удельное электросопротивление толстых пленок, полученных трафаретной печатью паст на основе порошка триникель борида Ni₃B с последующей термообработкой нанесенных на диэлектрическую подложку слоев в среде воздуха. Для получения пленок использовался порошок Ni₃B различной дисперсности, которая достигалась за счет варьирования ускорения вращения барабана планетарной мельницы и времени размола.

Таблица - Режимы размола и характеристика полученных порошков.

N	Уско-	Время	Усредн.	Удельн.
п.п.	рение	размо-	размер,	поверх-
		ла,мин	МКМ	ность,
				M^2/Γ
1	12 g	90	9,04	0,14083
2	12 g	180	8,86	0,14380
3	12 g	270	7,35	0,16626
4	12 g	360	6,49	0,17810
5	12 g 24 g	360 10	5,37	0,20319
6	12g 24 g	360 20	2,47	2,11128
7	12 g 24 g	360 30	1,55	1,16871

Измерения осуществлялись компенсационным методом в поле постоянного электромагнита, величина которого регулировалась в пределах $0 \div 2$ Тесла. По результатам измерений определялась величина магнитосопротивления пленок, равная $(R_{\rm H}-R_{\rm o})$ / $R_{\rm o}$, %, где $R_{\rm H}$ и $R_{\rm o}$ -электросопротивление в магнитном поле и при его отсутствии. На рис. 1 представлен результат измерения магнитосопротивления толстых пленок, полученных из порошков

 Ni_3B различной дисперсности, на рис.2 – зависимость магнитосопротивления от величины внешнего магнитного поля.

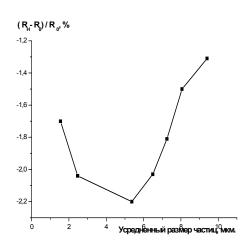


Рисунок 1

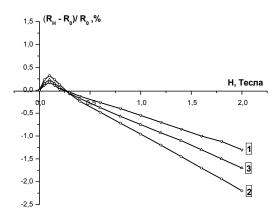


Рисунок 2

Изучен также тер-мический коэффициент электросопротив-ления пленок.

Результаты эксперемента объясняются в рамках спин-зависимой электропроводности, обусловленной особенностями фазового состава и наноструктуры пленок, представляющей собой нанодисперсные частицы ферромагнитного никеля, разделенные прослойкой диэлектрика.