ВЛИЯНИЕ ДОБАВОК СИЛИЦИДА И ГЕКСАБОРИДА КАЛЬЦИЯ НА УПЛОТНЕНИЕ, СТРУКТУРУ И СВОЙСТВА ДИБОРИДА ТИТАНА ПРИ ГОРЯЧЕМ ПРЕССОВАНИИ

Ковальченко М.С., Очкас Л. Ф., Юрченко Д. 3.

Институт проблем материаловедения им. И. Н. Францевича НАН Украины ул. Кржижановского, 3, Киев, 03680, e-mail: mskoval@ipms.kiev.ua

Металлические и неметаллические (AlN, SiC. TaC, Si_3N_4 , $MoSi_2$,) добавки активируют уплотнение диборида титана при горячем прессовании, улучшают структуру и механические свойства материала [1].

работе B настоящей исследовано уплотнение, структурообразование и формирование физико-механических свойств диборида титана с добавками силицида и гексаборида кальция при горячем прессовании. Показано, что введение добавок 3 и 5 мас. % силикокальция (СК) снижает температуру прессования 200 °C, способствует образованию мелкозернистой структуры, повышает плотность и механические свойства материалов на основе TiB₂.

На рис. 1 показано влияние добавок силикокальция и гексаборида кальция на относительную плотность и прочность при изгибе, а также силицида титана [2].

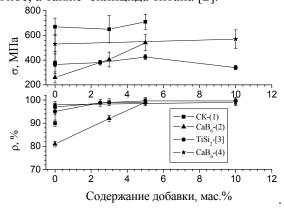


Рис.1 — Влияние неметаллических добавок силикокальция и гексаборида кальция на относительную плотность ρ и прочность при изгибе σ диборида титана

Показано, что добавка гексаборида кальция свыше 5 мас. % тормозит рост зерен при горячем прессовании порошка TiB_2 , что приводит к повышению твердости и прочности композиционного материала при изгибе.

Таблица – Плотность и механические свойства горячепрессованных при $1600~^{\circ}$ С материалов TiB_2 —СК

Свойство	Содержание силикокальция, мас. %			
	0	P^*	3	5
Относительная плотность, %	90	97	99	99
Твердость по Виккерсу HV , $\Gamma\Pi a$	_	23,5	24,8	19,7
Прочность при изгибе, МПа	380	670	650	710
Прочность при сжатии, ГПа	_	2,57	3,13	2,67
Трещиностойкость, $M\Pi a \cdot m^{1/2}$	_	5,4	6,3	6,8

^{*} Р – размолотый порошок ТіВ2

Результаты рентгеноструктурных исследова-ний показали, что в системе TiB_2 — CaB_6 при горячем прессовании происходит растворение Ca в дибориде титана.

Композиционный материал с 10 мас. % CaB_6 , спрессованный при температуре $1850\,^{\circ}\mathrm{C}$, имеет относительную плотность 90%, твердость по Виккерсу $28,7\,^{\circ}$ ГПа и прочность при изгибе $570\,^{\circ}$ МПа.

Достигнутый уровень прочностных свойств разработанных материалов на основе диборида титана с добавками силицида и гексаборида кальция превосходит прочностные свойства материалов на основе диборида титана с большим содержанием связующих и полученных при более высоких температурах [1, 2].

Литература

- 1 Basu B., Raju G.B., Suri A.K. Processing and properties of monolithic TiB₂ based materials // J. Inter. Mat. Rev. -2006. -51. N 0. P. 352–374.
- 2. Raju G.B., Basu B. Densification, sintering reactions and properties of titanium diboride with titanium disilicide as a sintering aid // J. Am. Ceram. Soc. 2007. –90.—№ 11.— P. 3415–3423.